Nitrogen deposition alters soil chemical properties and bacterial communities in the Inner Mongolia grassland.
نویسندگان
چکیده
Nitrogen deposition has dramatically altered biodiversity and ecosystem functioning on the earth; however, its effects on soil bacterial community and the underlying mechanisms of these effects have not been thoroughly examined. Changes in ecosystems caused by nitrogen deposition have traditionally been attributed to increased nitrogen content. In fact, nitrogen deposition not only leads to increased soil total N content, but also changes in the NH4(+)-N content, NO3(-)-N content and pH, as well as changes in the heterogeneity of the four indexes. The soil indexes for these four factors, their heterogeneity and even the plant community might be routes through which nitrogen deposition alters the bacterial community. Here, we describe a 6-year nitrogen addition experiment conducted in a typical steppe ecosystem to investigate the ecological mechanism by which nitrogen deposition alters bacterial abundance, diversity and composition. We found that various characteristics of the bacterial community were explained by different environmental factors. Nitrogen deposition decreased bacterial abundance that is positively related to soil pH value. In addition, nitrogen addition decreased bacterial diversity, which is negatively related to soil total N content and positively related to soil NO3(-)-N heterogeneity. Finally, nitrogen.addition altered bacterial composition that is significantly related to soil NH4(+)-N content. Although nitrogen deposition significantly altered plant biomass, diversity and composition, these characteristics of plant community did not have a significant impact on processes of nitrogen deposition that led to alterations in bacterial abundance, diversity and composition. Therefore, more sensitive molecular technologies should be adopted to detect the subtle shifts of microbial community structure induced by the changes of plant community upon nitrogen deposition.
منابع مشابه
Seasonal and Spatial Variations of Bulk Nitrogen Deposition and the Impacts on the Carbon Cycle in the Arid/Semiarid Grassland of Inner Mongolia, China
Atmospheric nitrogen (N) deposition is an important component that affects the structure and function of different terrestrial ecosystem worldwide. However, much uncertainty still remains concerning the magnitude of N deposition on grassland ecosystem in China. To study the spatial and temporal patterns of bulk N deposition, the levels of N (NH4+-N and NO3--N) concentration in rainfall were mea...
متن کاملEffects of Nitrogen Fertilization on Soil Microbial Biomass and Community Functional Diversity in Temperate Grassland in Inner Mongolia, China
Nitrogen (N) fertilization may profoundly affect soil microbial communities. In this study, a field fertilization experiment was conducted in temperate grassland in Inner Mongolia, China to examine the effect of N fertilization on soil microbial properties and the main factors related to the characteristics of soil microbial community. Soil microbial biomass carbon (MBC) and microbial functiona...
متن کاملDivergent Effects of Nitrogen Addition on Soil Respiration in a Semiarid Grassland
Nitrogen (N) deposition has been steadily increasing for decades, with consequences for soil respiration. However, we have a limited understanding of how soil respiration responds to N availability. Here, we investigated the soil respiration responses to low and high levels of N addition (0.4 mol N m(-2) yr(-1) vs 1.6 mol N m(-2) yr(-1)) over a two-year period in a semiarid Leymus chinensis gra...
متن کاملChanges in soil carbon stocks and related soil proper- ties along a 50-year grassland-to-cropland conversion chronosequence in an agro-pastoral ecotone of Inner Mongolia, China
Land use change significantly influences soil properties. There is little information available on the long-term effects of post-reclamation from grassland to cropland on soil properties. We compared soil carbon (C) and nitrogen (N) storage and related soil properties in a 50-year cultivation chronosequence of grassland in the agro-pastoral ecotone of Inner Mongolia. Field surveys on land use c...
متن کاملCorrection: Soil Bacterial Communities Respond to Mowing and Nutrient Addition in a Steppe Ecosystem
In many grassland ecosystems, nitrogen (N) and phosphorus (P) are added to improve plant productivity, and the aboveground plant biomass is mowed and stored as hay for the bullamacow. Nutrient addition and mowing affect the biodiversity and ecosystem functioning, and most of the previous studies have primarily focused on their effects on macro-organisms, neglecting the responses of soil microbi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of environmental sciences
دوره 24 8 شماره
صفحات -
تاریخ انتشار 2012